Indian Institute of Technology, Kanpur

Proposal for a New Course

1. Course No: AEXXX

2. Course Title: Multidisciplinary Design Optimization

3. Per Week Lectures: 2 (L), Tutorial: 0 (T), Laboratory: 3 (P), Additional Hours[0-2]: 0 (A), Credits (3*L+2*T+P+A): 9 Duration of Course: Full Semester

4. Proposing Department/IDP: Aerospace Engineering

Other Departments/IDPs which may be interested in the proposed course: All Departments/IDP Other faculty members interested in teaching the proposed course: --

5. Proposing Instructor(s): Prof. Prabhat Hajela, Dr. Pradeep Moise

6. Course Description:

A) Objectives: The main objective of the course is to introduce students to Multidisciplinary Design Optimization (MDO) emphasizing its role in integrating multiple disciplines for effective design solutions. It further aims to engage them in hands-on projects to learn concepts and explore MDO principles using available software tools in Lab sessions.

S.	Broad Title	Topics	No. of
No.			Lectures
1.	Overview of Multidisciplinary	Definition	1
	Design Optimization	Historical Perspective	
		Applications	
2.	Fundamentals of	Optimization problem formulation	8
	Optimization	Optimization algorithms	
		Gradient-based Methods	
		Multi-objective Optimization	
		Evolutionary Algorithms	
		Other Heuristic Search Methods	
3.	Multidisciplinary Analysis	Nature of Coupled Analysis	4
	(MDA)	 Design Structure Matrix (DSM) 	
		Ordering of Analysis for	
		Computational Efficiency	
		 Approximations in Analysis – 	
		Response Surfaces, Kriging, Neural	
		Networks	
4.	Sensitivity Analysis	 Sensitivity Analysis Methods 	5

B) Contents (preferably in the form of 5 to 10 broad titles):

5.	Multidisciplinary Design Optimization Frameworks	 Overview of MDO Frameworks Decomposition Methods for Optimization Hierarchical and Collaborative Optimization 	4
7.	Emerging Trends and Future Directions in MDO	 Integration of Artificial Intelligence and Machine Learning Optimization under Uncertainty Digital Twins 	4
		Total	26

(C) Pre-requisites: None

(D) Short summary for including in the courses of Study Booklet: The course provides a comprehensive exploration of optimization principles applied to complex engineering systems. It begins with an introduction to the importance and significance of MDO, emphasizing its role in integrating multiple disciplines for effective design solutions. The course includes a brief overview of optimization methods, including important gradient-based methods and non-traditional/heuristic methods for optimization such as genetic algorithms and particle swarm optimization. The course also examines multidisciplinary systems analysis, emphasizing modeling techniques and sensitivity analysis to understand system behavior. MDO frameworks and algorithms are reviewed, showcasing hierarchical, collaborative, and concurrent approaches. Design space exploration strategies are discussed, emphasizing Pareto optimization and decision-making under uncertainty. The role of machine learning and artificial intelligence in multidisciplinary design optimization will be examined. Students will engage in hands-on projects to learn concepts and explore MDO principles using available software tools. Completion of a team-based project that examines some aspect of MDO in greater detail will be required of all students.

7. Recommended Books:

- 1. Engineering Design Optimization, Joaquim R.R.A. Martins, Cambridge University Press, 2022. Free PDF version is available: <u>https://mdobook.github.io</u>
- 2. Numerical Optimization Techniques for Engineering Design: With Applications, G.N. Vanderplaats, VR&D Press.

8. Any other remarks: --

Dated: <u>27/5/2024</u> Proposer: <u>Prof. Prabhat Hajela, Dr. Pradeep Moise</u>

Dated:______ DUGC/DPGC Convener:__

The course is approved / not approved

Chairman, SUGC/SPGC

Dated:____