
Mathemania’16 Team Name: ..................................

Grade Table (for checker use only)

Question Points Score

1 8

2 10

3 14

4 14

5 18

6 18

7 22

8 26

9 30

10 30

Total: 190

Team Members ( Name and Roll no):

• ......................................................

• ......................................................

• ......................................................

INSTRUCTIONS:

• Write your team name on top of each page.

• If you have any queries, contact an invigilator. Any sort of interaction with another
team can lead to a penalty or disqualification.

• Submit any electronic devices that you possess, to one of the invigilators. You may
collect them after the event. Any team caught using any electronic device will be
immediately disqualified.

• Enough space has been provided in the question paper. Use it wisely. However, if you
need extra sheets, contact an invigilator.
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1. (8 points) Define the function f(x, y, z) by

f(x, y, z) = xy
z − xzy + yz

x − yxz

+ zx
y

Evaluate f(1, 2, 3) + f(1, 3, 2) + f(2, 3, 1) + f(2, 1, 3) + f(3, 1, 2) + f(3, 2, 1)
Solution :
Take g(x, y, z) = f(x, y, z) − zx

y
. By symmetry, g(1, 2, 3) + g(1, 3, 2) + g(2, 1, 3) +

g(2, 3, 1)+g(3, 1, 2)+g(3, 2, 1) = 0 . So the desired sum is xy
z
+xz

y
+yz

x
+yx

z
+zx

y
+zy

x
=

24
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2. (10 points) Start with n equally spaced dots P1, P2, ....Pn on a straight line , with a
distance 1 between consecutive dots. Using P1P2 as a base side, draw a regular pentagon
in the plane. Similarly, draw n− 2 additional regular pentagons on the base side P1P3,
P1P4, ......, P1Pn, all pentagons lying on the same side of the the line P1Pn. Find the
total number of dots.
Solution :
Ans (4n-3).
No. of points on the line=n
No. of points on the pentagon(excluding the base points)=3
Total no. of pentagons=(n-1)
Total no. of points on the pentagon(excluding the base points)=3(n-1)
Total no. of points=No. of points on the base line + No. of points on the remaining
parts=n+3n-3=4n-3
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3. (14 points) An urn contains 1729 balls of different colors. Randomly select a pair,
repaint the first to match the second, and replace the pair in the urn. What is the
expected time until the balls are all the same color?
Solution
Ans=17282

If the color classes have sizes k1, k2, ..., km
For a particular k
Define φ(k) = (k(k−1)

2

∑k
j=1 j)

We first show that φ(k+ 1) + φ(k− 1)− 2φ(k) = (n− 1)/(n− k) except when k=n; the
k(k−1)

2
contributes 1, the term j=k contributes (j − 1)/(n− j) = (k − 1)/(n− k)

and the other summations j < k contribute nothing.
Then we say that the expected change in φ(k) on a give color class is k(n−k)

(n(n−1)) times

(φ(k + 1) + φ(k − 1) − 2φ(k)), since with probability frack(n− k)(n(n− 1)) the class
goes to size k+1 and with
the same probability it goes to size k-1. This expected change comes out to k/n.
Summing over the color classes (and remembering the minus sign),
the expected change in the ”cost from here” on one step is -1, except when we’re already
monochromatic,
where the exception k=n kicks in. One can rewrite the contribution from as (n −
1)
∑k

j=1(k− j)/(n− j) which incorporates both the k(k-1)/2 and the previous sum over

j. Class size=k Adding over all the classes. We get (n− 1)2.Substitute n=1729
Therefore, Ans = 17282
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4. (14 points) In trapezoid ABCD, with sides AB and CD parallel, ∠DAB = 6◦ and
∠ABC = 42◦. Point X on side AB is such that ∠AXD = 78◦ and ∠CXB = 66◦ .
If AB and CD are 1 unit apart, Find AD + DX- BC - CX

Solution :
Ans=8 units
Dropping a perpendicular (of length 1) from D to AX, and similarly from C to BX, we
see that:
AD = cosec(6)
DX = cosec(78)
BC = cosec(42)
CX = cosec(66)
Notice that, for x = 6, 78, 42, 66, and30, sin(5x) = 0.5. We now express sin(5x) in terms
of sin(x).
De Moivre’s Theorem states that for any real number x and any integer n,
cos(nx) + i sin(nx) = (cos(x) + i sin(x))n

Setting n = 5, expanding the right-hand side using the binomial theorem, and equating
imaginary parts, we obtain
sin(5x) = sin5(x)−10 sin3(x) cos2(x)+5 sin(x) cos4(x) = sin5(x)−10 sin3(x)(1−sin2(x))+
sin(x)(1− sin2(x))2

Since, sin2(x) + cos2(x) = 1 = 16 sin5(x)20 sin3(x) + 5 sin(x) This result can also be
obtained by means of trigonometric identities.
Setting s = sin(x), it follows that the five distinct real numbers,
sin(6), sin(78), sin(42), sin(66), and sin(30) = 1

2
(1)

are roots of the equation
16s5 − 20s3 + 5s = 1

2
, or, equivalently, of 32s5 − 40s3 + 10s− 1 = 0 (2)

By the Fundamental Theorem of Algebra, (2) has exactly five roots, up to multiplicity,
and hence these must be precisely the distinct roots identified in (1). Since s = 1

2
is a

root of (2), the equation factorizes:
(2s− 1)(16s4 + 8s3 − 16s28s+ 1) = 0
yielding the quartic equation whose roots are sin(6), sin(78), sin(42), and sin(66). As s
= 0 is not a root of this quadratic equation, we may divide by s4, and, setting t = 1

s
,

obtain
t4 − 8t316t2 + 8t+ 16 = 0
an equation whose roots are cosec(6), cosec(78),−cosec(42),−cosec(66). By Viète’s for-
mulas, the sum of the roots of this equation is 8.
Thus, AD + DX (BC + CX) = 8 inches.

P.S.:Viète’s formulas is just the fancy name for the rule about the relation between the
co-efficients and the roots of a polynomial:-)
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5. (18 points) An immortal flea jumps on whole points of the number line, beginning with
0. The length of the first jump is 3, the second 5, the third 9, and so on. The length of
kth jump is equal to 2k + 1. The flea decides whether to jump left or right on its own.
Is it possible that sooner or later the flea will have been on every natural point, perhaps
having visited some of the points more than once?
Solutions :
It’s enough to prove that being at the point x at its k-th move, the flea can make some
jumps and after that to reach x± 1. Indeed, let it jumps m + 1 times to the right and
the last m+ 2-th jump be to the left. Thus it would be at the point:

x+ (2k + 1) + (2k+1 + 1) + · · ·+ (2k+m + 1)− (2k+m+1 + 1) = x− 2k +m.

Now, choosing m = 2k ± 1, we prove the claim.
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6. (18 points) 100 integers are arranged in a circle. Each number is greater than the sum
of the two subsequent numbers (in a clockwise order). Determine the maximal possible
number of positive numbers in such circle.
Solutions:
Label the numbers a1, a2, . . . , a100. Then ai > ai+1 + ai+2 for all i, if we consider the
indices (mod 100). Now assume that there are at least 50 positive numbers on the
circle. Then two positive numbers will follow a non-positive one (which contradicts the
given condition) unless every other number is non-positive. Hence there are at most 50
positive numbers on the circle, and according to the discussion above, we may assume
wlog that they are a1, a3, . . . , a99.

But, adding some inequalities gives

a100 > a1 + a2 > a1 + a3 + a4 > a1 + a3 + a5 + a6 > · · · >
∑
2-i

ai + a100 ⇐⇒ 0 >
∑
2-i

ai

so at least one of a1, a2, . . . , a99 is negative as well, implying that at most 49 of the
numbers on the circle are positive. This is the number we are looking for: For the 98
first ai, let

ai =

{
1 if i is odd,

−998− i if i is even,

and set a99 = −700, a100 = −500. This does indeed work, and we are done - the answer
is 49 .

Just a comment: This can probably be generalized for any even number of numbers on
a circle satisfying the same conditions. A similar construction will do, but the negative
numbers will have to have a little larger absolute value.[/quote]
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7. (22 points) Prove that
[(2 +

√
3)2n−1]− 1

2
is a perfect square for all n ∈ N . Where [x]

is the greatest integer function
Solutions:
Just note that, (2 +

√
3)2n−1 + (2−

√
3)n ∈ N. Also, (2−

√
3)2n−1 < 1. Thus,

[(2 +
√

3)2n−1] = (2 +
√

3)2n−1 + (2−
√

3)2n−1 − 1

Now, suppose, (2+
√
3)2n−1+(2−

√
3)2n−1−2

2
= x2n We have, x1 = 1, x2 = 5 and it is easy to

check that, xn+1 = 4xn − xn−1. Thus, xn is a sequence of integers. So we are done
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8. (26 points) Let a and b be positive integers such that a! + b! divides a!b!. Prove that
3a ≥ 2b+ 2.
Solution :
For a ≥ b then it suffices to check for b ≤ a ≤ 1. If a ≥ 2 then it’s obvious that
3a ≥ 2b+ 2. For a < b, we have 1 + b!

a!
| b! = b!

a!
· a! implies 1 + b!

a!
| a!.

On the other hand, since there are b − a + 1 consecutive numbers in the product b!
a!

so
for any prime p such that 1 ≤ p ≤ b−a then p | b!

a!
. Therefore, gcd

(
(b− a)!, b!

a!
+ 1
)

= 1.

If b − a + 1 is a composite number then gcd
(
(b− a+ 1)!, b!

a!
+ 1
)

= 1. This follows
1 + b!

a!
| a!
(b−a+1)!

, which means

a!

b!
= (a+ 1) · · · b︸ ︷︷ ︸

b−a numbers

< (b− a+ 2) · · · a︸ ︷︷ ︸
2a−b−1 numbers

=
a!

(b− a+ 1)!
.

Since b > a so each factor in LHS is greater than the respective factor in RHS, so the
only way for the above inequality to be true is b− a < 2a− b− 1 or 3a ≥ 2b+ 2.

If b − a + 1 is a prime. If b − a + 1 6= a then there always exist a positive integer k
such that a ≤ k(b− a + 1) ≤ b. This means b− a + 1 | b!

a!
. We do the similar thing like

the above case. If b − a + 1 = a is a prime. From gcd
(
(b− a)!, b!

a!
+ 1
)

= 1 we follow
b−a < 2a− b or 3a ≥ 2b+ 1. Since 2a−1 = b so a ≤ 1. This case can be easily checked.

Thus, 3a ≥ 2b+ 2 as desired.

Page 9 of 11



Mathemania’16 Team Name: ..................................

9. (30 points) Let R be the set of real numbers. Determine all functions f : R → R that
satisfy the equation

f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

for all real numbers x and y.
Solutions :
Let P (x, y) be the assertion f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

P (0, 0)⇒ f(f(0)) = 0

P (0, f(0))⇒ 2f(0) = f(0)2 ⇒ f(0) = 0 or 2

case 1.f(0) = 2⇒ f(2) = 0

P (x, 1)⇒ f(x+ f(x+ 1)) = x+ f(x+ 1)

P (0, f(x+ 1) + x)⇒ f(x+ 1) + x+ 2 = f(x+ 1) + x+ 2(f(x+ 1) + x)

⇒ f(x) = 2− x∀ ∈ R
case 2.f(0) = 0

P (x, 0)⇒ f(x+ f(x)) = x+ f(x)

P (x, 1)⇒ f(x+ f(x+ 1)) = x+ 1 + f(x)

P (1, f(x+ 1) + x)⇒ f(1 + f(1 + x+ f(x+ 1))) + f(x+ f(x+ 1)) = 1 + f(x+ 1 + f(x+
1)) + f(x+ 1) + x

⇒ f(f(x) + x+ 1) = f(x) + x+ 1

P (x,−1)⇒ f(x+ f(x− 1)) + f(−x) = x+ f(x− 1)− f(x)

⇒ −f(x) = f(−x)

P (x,−x)⇒ f(x) + f(−x2) = x− xf(x)

P (−x, x)⇒ f(−x) + f(−x2) = −x+ x(−x)

⇒ f(x)− f(−x) = 2x− x(f(x) + f(−x))

⇒ f(x) = x∀x ∈ R
hence, f(x) = 2− x and f(x) = x are solutions.
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10. (30 points) Prove that

| cos(x)|+| cos(y)|+| cos(z)|+| cos(y+z)|+| cos(z+x)|+| cos(x+y)|+3| cos(x+y+z)| ≥ 3

for all real x, y, and z.
Solution :
Claim : for all x,y ∈ R , we have | cos(x)|+ | cos(y)|+ |cos(x+ y)| >= 1 . Proof :

| cos(x)|+| cos(y)|+| cos(x+y)| ≥ | cos(x)|| sin(y)|+| cos(y)|| sin(x)|+| cos(x+y)| ≥ | sin(x+y)|+| cos(x+y)| >= 1

Using this claim, we have following chain of inequalities,

| cos(x)|+ | cos(y + z)|+ |cos(x+ y + z)| >= 1

| cos(y)|+ | cos(x+ z)|+ |cos(x+ y + z)| >= 1

| cos(z)|+ | cos(x+ y)|+ |cos(x+ y + z)| >= 1

Adding them gives the desired result .
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