Department of Materials Science and Engineering Indian Institute of Technology Kanpur

Course Name: Transport Phenomena

Credits: 3-0-0-0-4

Course No: MSE 626

Prerequisite: None

Category: Compulsory course for all M.Tech. students of MSE Department,

to be offered in odd semester

Course Contents:

1. Fluid dynamics (7 Lectures)

1. I tala a juantes (1 Dectares)	
Introduction to Transport phenomena in materials processing	1L
Newton's law of viscosity, equation of continuity, Navier Stokes equations	2L
Macroscopic mass and energy balance;	1.5
Characteristics of industrial flows	0.5L
Numerical problems on above topics of interest to metals and materials processing	2L

2. Heat transfer (16 lectures)

2. Heat transfer (10 feetares)	
Fundamentals of conduction heat transfer; Laws and equations; Steady and unsteady heat	2L
conduction	
Numerical problems on conductive heat transfer	3L
Fundamentals of convective heat transfer; free and forced convective heat transfer, Convective	1L
heat transfer rate laws and heat transfer coefficient	
Problems on Convective heat transfer	2L
Fundamentals of Radiation heat transfer and rate laws; view factors	3L
Problems on Radiation heat transfer	1L
Application of heat transfer in: Heat treatment, solidification, cooling of slabs, heat flow	3L
through refractory walls etc.	

3. Mass Transfer (16 lectures)

Fundamentals of diffusion; rate laws, Uphill diffusion and Kirkendal's effect, steady and	4L
unsteady diffusion	
Numerical problems on diffusion mass transfer	2L
Fundamentals of convective mass transfer; free and forced convective mass transfer transfer,	2L
Convective mass transfer, rate laws and mass transfer coefficient	
Problems on Convective mass transport	2L
Application of mass transfer in: case hardening, doping of semi conductors, homogenization.	6L

oxidation, absorption/desorption of gases in liquid metals.

Recommended Text books:

- 1. Transport phenomena: D. R. Geiger and G. H. Poirier
- 2. Transport phenomena: D. R. Gaskel
- 3. Engineering in process metallurgy: R.Guthrie
- 4. Mass transport in solids and fluids: D. S. Wilkinson

Recommended Reference books:

- 1. Diffusion in solids: P. G. Shewman
- 2. Atom movements diffusion and mass transport in solids: J. Philibert
- 3. Diffusion in solids: field theory, solid-state principles, and applications: M. E. Glicksman