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Detecting optical signals

@ Sinusoidal optical signals characterized by amplitude/power,
frequency, phase, and polarization

@ Photodetector (PD): Produces current proportional to incident
optical power| Ion = RPopt | R=PD responsivity

@ PDs are insensitive to phase of optical waves
@ How to measure phase then? Using an interferometer
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What is an interferometer?

@ Interferometers converts phase to intensity/power
@ In GW detector context

o optical phase difference o differential strain: §¢ = G§L
@ converts d¢ to intensity/power
o Goal is to make G large

Dy —— —> loue1 = f1( P &r)
2 port

q)r _ interferometer [ Iout2 — f2(¢w¢7‘)

@ ¢, =phase to be measured, ¢, =reference phase
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Michelson interferometer layout

@ Consists of light source, two arms with end mirrors, and
beamsplitter

@ Michelson interferometer from 1881; simplified optical layout
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Electromagnetic fundamentals

Maxwell's equations

@ Classical light is electromagnetic phenomena; described by
Maxwell’s equations

Faraday’s law: V x E(F,t) = — 2 B(F, t)
o Ampere-Maxwell law: V x H(F, t)
o Gauss’s laws: V - D(F, 1) = p(F t)
e Constitutive relations D = ¢E an
properties

@ Harmonic solutions: E(F, t) = Eycos(wt + ¢(F)) = Re[Eye/*(") ef+1]
e E = Eye*( is called a phasor
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Phasor representation

@ Complex number, represented as

a vector in complex plane S

@ Time-domain: ' . 073 .
E cos(wt + ¢) — Eel® = E: . 0 )
Phasor . 0.25 .

@ Phasor: E —)Re[ge/"’-’t]: —: 20.75-0.5-0.25 0.25 0.5 0.75 :Re of E
Time-domain . e .

@ Exercise: Obtain phasor form of °. > Lt
X cos(wt — kz) + y2sin(wt — kz) P A

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003
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Electromagnetic fundamentals

Describing optical waves: Plane wave description

@ From Maxwell’s equations we obtain wave equation
V2EF + w2ucE(F) = 0

@ Optical waves propagating in z—direction; E(7) = E(x, y)Ae
o k=w/c=2x/\is phase constant

e E;(x,y) =transverse field distribution

e Plane wave: E(x, y) independent of x and y coordinates
e Longitudinal part Ae~/* is a complex number at each z
e E; determines polarization of wave

@ Normalize such that |A|? is optical power
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Electromagnetic fundamentals

Polarization of light

@ Defined as orientation of electric
field vector E in space
e Linear polarization: £
orientation constant with time
o Elliptical polarization: E

orientation varies with time

e Jones vector: As
Ay

@ Optical elements such as
quarter-wave and half-wave
plates can be used to change
polarization

pradeepk@iitk.ac.in (IIT Kanpur)

o

Left

H R

-
(©)

G. R. Fowles, Introduction to Modern Optics

[
1
T

¥

1

9/38



Describing optical elements

Describing mirrors

@ Mirrors are used extensively in

GW detectors and other optical Efms | — Ef
systems
e Incident light partially reflected Ere— | <L

and transmitted by mirror ntir,t

@ Flexibility to choose phase of
reflection and transmission
coefficients; ¢, = /2 or
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Describing optical elements

Describing mirrors

@ Mirrors are used extensively in

GW detectors and other optical Efms | — Ef
systems

e Incident light partially reflected Ere— | <L
and transmitted by mirror nthrt

@ Flexibility to choose phase of
reflection and transmission o E- =rEf +1E;

coefficients; ¢, = m/2 or 7 ° Ef =tEf +rE,

o |r|=|rand [t| = |f|
. o r't +t'r =0and
M:<j; ]’;) MM = | P2+ [t]2 = 1

@ R = |r|? reflectivity and
T = |t|? transmittivity

Mirror matrix is unitary
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Describing optical elements

Reflection and transmission coefficients

@ Depend upon polarization of v
incident light, angle of incidence 7 ol
w.r.t. normal to interface, and | orvpe

refractive index on two sides of

interface ﬁl | %’ )
@ TE case: Electric field vectors are £
perpendicular to plane of \<;>/

|nC|dence " _cosf—ncosd \
"= cos 0+ n COs ¢

@ Coefficients can be derived by \
applying boundary conditions 4\

G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Boundary conditions

@ At interface, vectors field vectors
satisfy following conditions
e Tangential E—field and normal
B—field are continuous across
boundary
o Tangential H—field and normal
D—field are discontinuous by
amount of current and charge
densities respectively
@ In reflection coefficient
calculation for TE case
e E+E =F"
e —Hcos(#) + H cos(#) =
—H" cos(¢)
o E/H=n/e
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TE polarization:
All E-vectors normal
to xy plane

= €08 0 —ncos ¢ /
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G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Reflection and transmission coefficients

@ TM case: Magnetic field vectors

are perpendicular to plane of o
. . | All H vectors normal
incidence v | oo
@ Coefficients can be derived by ‘/Q
k

applying boundary conditions i ~

_—ncosf+cosd

» ncos 0 + cos ¢

G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Reflection coefficients of TE and TM polarizations

S o
= o
T T

Magnitude of reflection coefficient

| |
910 45 50 55 60 65 70 75 80 85 90
Angle of incidence

@ Zero reflection in TM case when light is incident at Brewster’s
angle
@ This plot: ny = 1 (air) and n, = 1.5. What happens if ny > n,?
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Describing optical elements

Describing lossy mirrors

@ Real mirrors are lossy due to absorption by mirror material

@ Reflectance+Transmittance+loss=1, |r|> + [t + L =1

@ Further complication due to fluctuation-dissipation theorem which
states that loss is accompanied by additional noise injected into
system

@ ¢ = absorption coefficient

lossy mirror

\/Elefe H \/Ey\’l*E

| ]
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2

Danilishin and Khalili, LRR, 15 (2012)
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Describing optical elements

Describing beamsplitter

@ /O relation described by same

matrix M 4
@ Types: polarizing and 1 —> 3
non-polarizing
@ Common 50:50 beamsplitter: 2
_a (01
5=5(1§)
@ Delay: A(L) = A(0)e kot A(0) —> B —> Al
accumulates phase delay kynL o 1L
wrtz=0 = B
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Michelson interferometer

Layout and analysis of Michelson interferometer

@ Beamsplitter splits laser light into —

two parts; one travels towards Tl | "

My other towards My .
@ After reflection at mirrors My, ' Is

beams recombine at beamsplitter — EK | PR

_ i — ir,a—i2KL —  —

® Ay = Ay, As =]jrve | YAz nvﬂ B a
[+ A6 = ﬁAh A9 — jl’xeijkLXAs 10

Interferometer output amplitudes

ASYM port: Aasym = —5 (rxe72kx — rye=i2kly) A,
SYM port: Asyy = 4 (rxe 72kbx 1 rye /2Ky A
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Michelson interferometer

Matrix analysis of Michelson interferometer

@ Input vector at port 1: ¢ = [A; 0]T
@ Propagation+reflection+propagation towards beamsplitter

. op [ Jrxe Pk 0
described by matrix P = < 0 jryei2kly

@ (Try) Multiply three matrices with input vector: B~1PBy) to get
Aasym and Asym
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Michelson interferometer

Effect of gravitational wave

@ GW perturbs mirrors and induces changes in reflected light
@ As — rye /2Ky g=i2klyh(1)/2 A, - h(t) induces phase modulation
@ Harmonic GW, h(t) = hy cos(wgwt) creates sidebands

— _ jﬁ fwowt _ /ﬂ —jwgwt
As = AZ(O) <1 5 e 5 e )

@ More about phase modulation later
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Understanding interferometer response
@ ASYM port amplitude: Aasyy = —5 (rxe/2ktx — rye=/2kby) A

@ Assume perfectly reflecting mirrors without loss: ry = ry = 1
@ ASYM port power Pagyy = Pinsin?(kAL), AL= Ly — Ly

1
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Michelson interferometer

Operating in linear region

Under GW perturbation, Ly — Lx + dlx and Ly — Ly + ély
Amplitude strain h = 20l | — Letly s avg. length

Pasym = Pin sinz(kAL + khL). What should be kAL for operation
in linear region?

Expand Pasyy using Taylor series with khL as perturbation

Pasym = Pinsin®(khL) + PikhL———— sin?(kAL) +

0
a(kAL)

What value of kAL makes derivative maximum? (Ans. 7 /4)

Pasym = —(1 + 2khL); Laser intensity fluctuations swamps small
signal (khL) term — Linear region: bad!
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Michelson interferometer

Null region operation

@ At null point, KAL = 0 so that -
Pasym = Pinsin®(khL) ~ k?h?L?

@ Since h < 1, h? < 1 makes
detection a challenge |

@ Phasor analysis shows field e —= ~— iy

exiting ASYM port is in Laser .
quadrature (7 /2) with respect to !
incident light '
@ Here beamsplitter and mirrors
are assumed to provide 180°
phase shift upon reflection

\
.....
E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003
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Michelson interferometer

Signal extraction using lock-in

@ Modulate carrier to generate sidebands at Ao
@ Make FP cavity dark only to carrier fields (Schnupp asymmetry)

Pockels Cell

1]
R
Phase shifer | ¢ | V PhotoDetector
Y
O B> =]

Oscillator Mixer Low-Pass Filter/
Amplifier
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Michelson interferometer

Signal extraction using lock-in

; w*() ,, (1 N 1
= c _hﬂ-.a\_)\mud)
e R e A
=i sinl 24 Y 4 ; ik (£, +8,)
f+=1sin 27{ X - J e 3

1= IiSill’VZﬂ'[ }\AG ” ello=Mie](fxtby)
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Mirror reflection mismatch

@ Inpractice ryy =r+ %

@ Pasym = 1 [<r2 — %) cos? (kéL) + 5’2] P;

4

LI

Bower a antisymmttic port (Pasy/Pin)

02|

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves
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Fabry-Perot cavity

Fabry-Perot cavity: layout

@ Formed by two mirrors, My = {rj, t;} and Mo = {re, te}, te ~ 1
@ —riree /2K Erp fed back to cavity
_tFE . a—J2kL — =in
Erp = tiEip — riree /“"Epp = 1 rre 2K

@ Output field: Eyyt = tee /KL Erp = Hﬁz%
1

1 L |
I 1
Efn
—_— — Erp —_— -
E
- - ok £ - out
E — lile€ FP
ref
ri:ti rEIte
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Fabry-Perot cavity

FP cavity: characterization

@ Atresonance, e 2Kk = —1 and Pgp = P,.n(1(f,trer 7 = GrpPin

@ Resonance condition implies multiple peaks spaced
half-wavelength apart defining free-spectral range FSR = 5

. 2
@ With detuning 0L, Prp = = ”e)2+4t'riresin2(km P,

® SLrwHm = ¥, Where F = 7Y is cavity finesse

GFP

2F 2 Pin
1+ (25)%sin?(koL)

Prp =

@ Typical finesse values are >50
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FP cavity: detuning

0.35 T
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@ In this plot, 7 = 30 and r; = 0.9. Calculate r, and {;
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Fabry-Perot cavity

reflection

FP cavity:
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@ In this plot, 7 = 30 and r; = 0.9. Calculate r, and {;

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves
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Fabry-Perot cavity

FP cavity: reflection

@ When r; = re, at resonance, light is completely transmitted
(critical coupling)

@ When r; < re, at resonance, light is reflected mostly but more
importantly phase is highly sensitive to length variations (over
coupling)

@ To implement power recycling, FP cavities are operated in over
coupling mode
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Fabry-Perot cavity

Mirror motion

@ Mirror motion due to GW perturbation results in sidebands
@ Displacement x(t) = xo cos(§2st) yields phase shift ¢s = 2kx(t)
E, :jree‘/¢’5E3 & freE3+ re¢psEz = jreEs + Krexg (e/QS’ + e_/Qst) E;

kxoE5(0)

@ Sideband amplitude at resonance: E4(fs) = 1=~ =hws7er

e —j(Qs/c)L
Erer = @krexo — Iire€ e/2(s/0)L

Ein 2 3

— — —

—— f— 4 —-— re,t

Eref 5 —
"t x(t)
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FP cavity: Frequency response

@ For GW frequencies QsL/c < 1 so that E,r = —krexo%Em,
i
where f, = ;7= is critical frequency
@ This is low-pass filter transfer function with low-frequency gain of
krexo Grp and 3-dB bandwidth £,

@ Since f, oc F~1, high finesse leads to lower bandwidth (why?)

30
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i \ 7
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Fabry-Perot cavity

Simulating FP cavities using Finesse

@ Finesse is a frequency-domain simulation tool for interferometric
detectors

@ Easy to use and free!
@ Latest version 2.0 released

pradeepk@iitk.ac.in (IIT Kanpur) 33/38



Higher-order transverse modes

Paraxial wave equation

@ Practical optical beams are not plane waves; they are described
by paraxial wave equation

° (v2 + kz)E(Xv.y?Z) = 0 Wlth E(X7y7 Z) = e/sz(X7y7 Z)

@ Paraxial approximation: ]%] < 27“A gives equation
(02 + 92 + 2jkd;) A = 0 describing propagation of beams

2.2 2,.2
1 CXTEVE L xSyt o 2 o
DA ) = e @ o Kamay o N 2 o —ikz
2
1+ 5
Vo
3 )
z- - = >R
w(z) =wo [l + —5 R(z) =z I+ 2
2% z
kws Z
= —2 ¢ = — arctan —

IR
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Gaussian beams

@ Circularly symmetric with minimum transverse width wp at z =0
known as beam waist
°

w(z) grows with z; at z = zg, Rayleigh distance, w(z) = V2w,

_ata? 2yt z
Al ) = e Ry o ik
2
I
R
5 2
< 7)) = 7 “R
w(z) =wo [l + — R(x) = *(l + 73)
% be
kw? Z
IR = TO ¢ = — arctan —

IR
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Higher-order transverse modes

Higher-order modes

@ Different solutions (modes) of paraxial equation; not necessarily
cylindrical symmetric

@ Common modes: Hermite-Gaussian or transverse
electro-magnetic modes (TEM )

TEM,p (x, ¥, 2) = Ny (2 )E Hy, ﬂ Hy ﬂ
wi(z) wi(z)

2
y2  xlyy
7:(f:+m+l)arumn( JZR) ”‘Te Wi

2

aw(z)? 20+ mmln)

of  d\"
Hu(t) = e (—E) (’_rz
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Higher-order transverse modes

Higher-order modes

TEMy o TEM, o

TEMy,, TEM
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Higher-order transverse modes

Resonators and beams

@ Resonators cannot have plane surfaces (Why?); Stability of
resonators depend on surface shapes

TEMp, TEM,

TEM,,, TEM 4
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